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Low-energy random number generation is critical for many emerging computing schemes
proposed to complement or replace von Neumann architectures. However, current random number
generators are always associated with an energy cost that is prohibitive for these computing schemes.
We introduce random number bit generation based on specific nanodevices: superparamagnetic
tunnel junctions. We experimentally demonstrate high-quality random bit generation that represents
an orders-of-magnitude improvement in energy efficiency over current solutions. We show that the
random generation speed improves with nanodevice scaling, and we investigate the impact of
temperature, magnetic field, and cross talk. Finally, we show how alternative computing schemes can
be implemented using superparamagentic tunnel junctions as random number generators. These
results open the way for fabricating efficient hardware computing devices leveraging stochasticity,
and they highlight an alternative use for emerging nanodevices.
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I. INTRODUCTION

With conventional transistor technology reaching its
scalability limits [1], significant effort is involved in the
investigation of alternative computing schemes for micro-
electronics. Many of these emerging ideas, such as sto-
chastic computing [2–6] and certain brain-inspired (or
neuromorphic) schemes [7–9], require a large quantity of
random numbers. However, the circuit area and the energy
required to generate these random numbers are major
limitations of such computing schemes. For example, in
the popular neuromorphic TrueNorth system [7], one third
of the neuron area is dedicated to performing random
number generation. Indeed, 106 random bits are required at
each integration step of the system. More concerning, in
stochastic computing architectures, random number gen-
eration is typically the dominant source of energy con-
sumption, as the logic performed using the random bits is
generally quite simple and efficient by principle. Many
practical stochastic computing schemes therefore try to
limit the reliance on expensive independent random bits
using various techniques, including the sharing or reuse
of random bits [10–12]. However, such tricks limit the

capabilities of stochastic computing to small tasks, as they
introduce correlations between signals.
Most of the aforementioned unconventional computing

circuits use pseudorandom number generators. But these
pseudorandom number generators either lead to low-
quality random numbers or are highly energy and area
consuming. A preferable solution would be to rely on
“true” random number generators that generate random
bits based on physical phenomena that are intrinsically
random. However, such truly random number generators
are also difficult to realize with minimal energy con-
sumption. This difficulty is due to the fact that most true
random number generators function by triggering events
whose outcome is intrinsically random. Triggering these
events comes with a non-negligible energy cost. The
most energy-efficient example uses a bistable CMOS
circuit forced into in a metastable state which then
randomly falls into one of the two stable states, gen-
erating one random bit [13]. It consumes 3 pJ=bit and a
circuit area of 4000 μm2.
In order to reduce this large area footprint, recent

proposals suggest leveraging the inherent stochastic pro-
graming properties that arise in many of the bistable
nanodevices developed for memory applications [14].
This approach was investigated with oxide-based resistive
memory devices [15–18], phase-change memory devices*damien.querlioz@u-psud.fr
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[19,20], and magnetic memory devices [21–23], as well as
with straintronic memory devices [24]. However, these
approaches are based on repeated, energy-intensive pro-
graming operations, and they still require high energy
for random bit generation. For instance, it requires dozens
of pJ=bit to induce a stochastic switch of magnetization
in magnetic tunnel junctions with two stable states, as
proposed in the “spin-dice” concept, due to the high
energy barrier between the magnetic states. Optimized
schemes have been proposed [25–27], predicting a further
reduction in the energy cost per bit, but they are still
bounded by the need for a costly perturbation operation.
While proposing a high-quality random number with high
throughput, such strategies are no fit for emerging neuro-
inspired computing applications like stochastic computing
architectures.
A more natural approach would be to extract random

numbers directly from thermal noise, as doing so provides
randomness at no energy cost. Unfortunately, this approach
requires large circuits to amplify thermal noise into a large
signal of random bits, and it has not yet been shown to
be more energy efficient than the first approach. The
lowest-energy solution today is to use jitter as a way to
efficiently amplify the noise present in CMOS ring oscil-
lators. The most energy-efficient implementation [28]
requires 23 pJ=bit and 375 μm2.
In this work, we propose the use of nanomagnetic devices

that intrinsically amplify thermal noise without external
energy supply: superparamagnetic tunnel junctions. These
bistable magnetic tunnel junctions are reminiscent of the
ones used formagnetic random-accessmemories (MRAMs)
[29]. However, contrary to MRAM cells, the energy barrier
between the two magnetic states is very low, and thermal
fluctuations induce repeated and stochastic magnetization
switching between the two states at room temperature.
Therefore, no write operations are required and a low-
energy readout of the device state naturally produces random
bits. We show that these devices permit the generation of
high-quality random numbers at 20 fJ=bit using less than
2 μm2, which is orders of magnitude more efficient in terms
of energy and area than current solutions.
We first show experimentally that superparamagnetic

tunnel junctions allow the generation of high-quality
random bits with minimal readout circuitry, and that their
behavior can be predicted by existing physical models.
We then use the model to investigate the influence of
device scaling and environmental factors on random bit
quality and speed. Circuit simulation enables an estima-
tion of the energy efficiency of random bit generation.
Finally, we demonstrate the potential of these devices for
unconventional computing through the example task of
email message classification using random bits extracted
from the experimental data, and we show that they are
particularly well adapted to computing schemes trading
off speed for ultra-low-energy consumption.

II. EXPLOITING THE STOCHASTIC
BEHAVIOR OF SUPERPARAMAGNETIC

TUNNEL JUNCTIONS

Superparamagnetic tunnel junctions are bistable spin-
tronic nanodevices composed of a high-stability pinned
nanomagnet and a low-stability “free” nanomagnet, sepa-
rated by a tunnel oxide layer [Fig. 1(a)]. Their structure
is highly similar to the magnetic tunnel junctions used as
the basic cells of MRAMs. The devices we measure are
fabricated by sputtering, with a standard magnetic tunnel
junction process, with the CMOS-compatible stack detailed
in Fig. 1(b). E-beam lithography patterning is then per-
formed to produce 50 × 150 nm2 elliptic pillars.
The free magnet has two stable states, parallel (P) and

antiparallel (AP) relative to the pinned layer [Fig. 1(c)].
Through the tunnel magnetoresistance effect [30], the
electrical resistance of the junction in the AP state RAP
is higher than the resistance in the P state RP. This effect is
traditionally measured through the tunnel magnetoresist-
ance (TMR) coefficient defined by RAP=RP ¼ 1þ TMR.
The lateral dimensions of the device are chosen so that

the effective energy barrier between the two stable states
is not very high compared to kBT. Unlike the case of
MRAMs, for which the magnetization direction of the
free magnet is highly stable and can be switched only by
proper external action, the magnetization direction of the
superparamagnetic free magnet spontaneously switches
between its two stable states due to low stability relative
to thermal fluctuations [Fig. 1(c)] [31,32]. Here, no bias or
perturbation scheme is required to provoke these random
fluctuations—only temperature.
Resistance-versus-time measurements are done on junc-

tions by applying a small, 10-μA constant current through

FIG. 1. Structure and behavior of superparamagnetic tunnel
junctions. (a) Basic structure of the measured superparamagnetic
tunnel junctions and readout setup. (b) Detailed stack of the
junctions. (c) Representation of the two stable magnetic states,
and the associated energy barrier. (d) Experimental resistance
trace and thresholding operation.
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the junction. Such a small current amplitude is chosen to
have a negligible influence on the magnetic behavior
of the device [33] and to maximize its lifetime while
providing a clear signal. Figure 1(d) shows a sample from
the time evolution of the electrical resistance of a junction
measured at room temperature, as well as a binarized
version, obtained by thresholding. We see that the resis-
tance follows two-state fluctuations analogous to a random
telegraph signal. The mean frequency of fluctuations is
strongly related to the shape and material properties of the
junction [34].
Figure 2(a) shows the histograms of the dwell times in

the 1 (AP) and 0 (P) states, obtained through measurement
of a superparamagnetic tunnel junction over a 10-s period.
We see that these histograms can be fitted by an
exponential law, which is characteristic of a Poisson
process. Figure 2(b) presents the power spectrum density
of the same signal, superimposed with the expected
power spectrum density of a random telegraph signal
based on a Poisson process. Excellent agreement between
the measured results and the hypothesis of a Poisson
process is seen.
Random bits can be extracted by sampling the voltage

across the device at a constant frequency. The voltage is
initially sampled at 100 kHz, and bitstreams with slower
sampling rates are obtained by subsampling the initial
bitstream. To evaluate the quality of the obtained random
bits, the device is measured for over 2.5 days, producing
21.2 gigabits. No external magnetic field is applied during
the measurement.

III. OPTIMIZING THE QUALITY
OF RANDOM BITS

The sampling frequency needs to be chosen carefully
relative to the mean switching frequency of the junction,
defined as FMTJ ¼ 1=ðτ1 þ τ0Þ, where τ1 and τ0 are the
mean dwell times in states 1 and 0, respectively. FMTJ is
measured to be 1.66 kHz (τ1 þ τ0 ≈ 604 μs). Figure 2(c)
presents the correlation of consecutive bits extracted at

different sampling rates. This result is superimposed on
the one theoretically expected from a Poisson process. At
high sampling frequency, subsequent bits are naturally
autocorrelated (at Fsampling ¼ 100 kHz, correlation reaches
92.8%), and they can therefore not be used for applications.
This correlation decreases exponentially with the sampling
period, which can therefore be chosen based on the
correlation requirements on the random numbers.
As observed in Fig. 2(a), the AP and P states possess an

asymmetric stability: the device spends more time, on
average, in the P state than in the AP state, which
corresponds to a mean state (mean of the binarized signal)
of 60.5%. This asymmetry can be connected to the stray
field induced by the pinned magnetic layer structure, which
is present in all magnetic tunnel junctions [35]. This biasing
field offsets the junction mean state from the ideal 50%
value required for most applications, and it is subject to
device-to-device variations.
In order to eliminate this bias and any residual bit

correlation, a “whitening” of the random bits is therefore
required. To achieve this operation, we make use of a
standard technique: combining several bitstreams into a
single one using XOR gates. It can be shown (see Fig. S10
of the Supplemental Material for the mathematical
derivation [36]) that the autocorrelation after XOR

whitening is the product of the individual autocorrelations
of the combined signals. The autocorrelation therefore
decreases exponentially with the number of combined
magnetic-tunnel-junction (MTJ) bitstreams, and it is
always lower than the autocorrelation of any of the
combined signals. In the same way, the mean state of
the whitened bitstream gets exponentially closer to 50%
with the number of XOR-combined bitstreams and always
stays closer to perfect balance than any of the bitstreams
in combination. As a reference, a more advanced but
heavy stateful whitening technique (referred to here as
the Blum technique [37]) is also applied to the raw
measurements.
As an illustration, we consider bits extracted at a

frequency of 5 kHz. The bitstream is then divided into

FIG. 2. Statistics of the experimental superparamagnetic tunnel junction signal. (a) Experimental histograms of the dwell times in
(top panel) antiparallel [(AP) high-resistance] and (bottom panel) parallel [(P) low-resistance] states, for a superparamagnetic magnetic
tunnel junction measured over 10 s. (b) Experimental power spectrum density (PSD) of the resistance signal. (c) Autocorrelation of the
experimental resistance signal as a function of the signal sampling period.
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chunks of equal length which are used as independent
signals and XOR combined bit by bit for the XOR whitening
process. We plot in Fig. 3(a) the consecutive bit correlation
and the mean state of the whitened bitstream as functions of
the number of signals combined by XOR. The correlation
and the mean-value bias decrease with the number of XOR-
combined signals. With 4 bitstreams (XOR4), the resulting
consecutive bit correlation drops under 1% and the mean
value reaches 49.9%. For 8 bitstreams (XOR8), the auto-
correlation is below 0.06% and the mean state reaches
50%, with a standard deviation of 0.5%. These results
suggest that XOR whitening can correct correlation and
mean-value issues.
However, in order to fully evaluate the quality of a

whitened bitstream, the signal autocorrelation and the
mean state are not sufficient metrics. We therefore use
the standardized National Institute of Standards and
Technology Statistical Test Suite (NIST STS) [38], which
evaluates the quality of the random bitstream against
188 tests. The NIST STS computes the statistics of
bitstreams, such as mean value, autocorrelation, standard
deviation, estimated entropy, and pattern occurrence
frequencies, and determines whether they are consistent
with perfect randomness. The NIST STS tests also look
for the presence of repeated structures, linear dependen-
cies, and other behaviors unexpected in a perfectly
random bitstream.
To perform the NIST STS tests, the bitstream to be

tested, measured over 2.5 days, is divided into 106-bit
sequences. Each chunk is then tested independently, and
the pass rate (the percentage of 106-bit sequences passing
the test) is computed for each of the 188 tests. Figures 3(b)
and 3(c) show the results for XOR4- and XOR8-whitened
bitstreams, respectively. For a bitstream to be consistent
with cryptographic quality, the pass rates of all tests should
lie in the green region [38], corresponding to the expected
minimal pass rate provided by the NIST STS, depending on
the number of tested chunks. We can see that bits extracted
by XOR8 whitening pass this requirement (this is also the
case with the Blum technique), while, with XOR4 whitening,

only a fraction of the tests is consistent with the crypto-
graphic quality of the random bits [39].
Table I presents more-comprehensive results: the pro-

portion of tests with passing rates that are consistent with
cryptographic quality are given for XOR-whitened bit-
streams at different sampling frequencies and numbers
of XOR-combined bitstreams. The results confirm that the
quality of the whitened bitstream increases for lower
sampling frequencies (less correlation) and higher numbers
of XOR-combined bitstreams (less correlation and lower
bias). Higher numbers of XOR-combined bitstreams there-
fore allow for a further increase of the sampling rate while
still passing all the NIST statistical tests, at the expense
of more circuit area and energy consumption. XOR8 at
Fsampling=FMTJ ¼ 3.0 appears to be an optimal choice, with
100% of the tests being consistent with cryptographic
quality and the highest sampling frequency. A more-
comprehensive analysis of the impact of the number of
XOR-ed bitstreams is presented in Fig. S1 of the
Supplemental Material [36].
Consistent results (presented in Fig. S2 of the

Supplemental Material [36]) are observed on a second
sample, measured over 1.5 days, producing 8.96 gigabits.

FIG. 3. Whitened experimental random bitstream quality assessment. (a) Mean-state and consecutive bit autocorrelation as functions
of the number of independent superparamagnetic tunnel junction signals combined by XOR. NIST STS randomness quality test results
on experimental data whitened by (b) XOR4 and (c) XOR8 at an Fsampling ¼ 5 kHz sampling frequency. When all test results are in the
green area, the bitstream is consistent with cryptographic quality.

TABLE I. NIST Statistical Test Suite results for the whitened
experimental random bitstream. Percentage of NIST STS tests
satisfying cryptographic quality requirements for different num-
bers of combined bitstreams, and different sampling frequencies.

Fsampling Fsampling=FMTJ Raw XOR2 XOR4 XOR8

100 kHz 60.4 0 10.1 10.1 10.1
20 kHz 12.1 0.5 0.5 10.6 12.2
9.1 kHz 5.5 1.1 10.6 10.6 88.3
5.9 kHz 3.6 1.1 1.1 16.5 100
5 kHz 3.0 1.1 1.1 72.9 100
1.9 kHz 1.1 1.1 14.4 97.9 100
0.9 kHz 0.54 1.1 14.4 98.4 100
0.7 kHz 0.42 1.1 16.0 97.9 100
0.5 kHz 0.30 1.1 16.0 98.4 100
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IV. SCALING CAPABILITIES OF THE RANDOM
NUMBER GENERATORS IN TERMS OF
SPEED AND ENERGY CONSUMPTION

A further study of the potential of superparamagnetic
tunnel junctions for random number generation requires a
realistic model of the device. In the literature, at low electric
current, magnetic-tunnel-junction switching is usually
described by an Arrhenius-Néel two-state analysis, model-
ing a thermally activated magnetic switching [40]. The
mean switching rates in each state are then described by

r0→1 ¼ 1=τ0 ¼ f0 exp

�
−
ΔE0→1

kBT

�

r1→0 ¼ 1=τ1 ¼ f0 exp

�
−
ΔE1→0

kBT

�
; ð1Þ

where f0 ¼ 1 GHz is the magnetic attempt frequency, and
ΔE0→1 and ΔE1→0 are the energy barriers associated with
each transition [see Fig. 1(c)]. Our experimental results
suggesting that superparamagnetic tunnel junction switch-
ing is a Poisson process are consistent with this model.
The superparamagnetic tunnel junctions that we char-

acterized experimentally in this study are slow devices.
They can be used to generate random bits at kilohertz
frequencies, sufficient for real-time brain-inspired systems
like those found in Ref. [7], but not for high-performance
applications. In our (50 × 150)-nm superparamagnetic
tunnel junctions, we identify that the switching occurs
through nucleation and propagation of a magnetic domain,
probably seeded by fluctuations in a subset of grains within
it [31] (see Fig. S3 of the Supplemental Material [36]). By
contrast, recent experiments on perpendicular-magnetic-
anisotropy (PMA) magnetic tunnel junctions have shown
that aggressively scaled devices (having diameters smaller
than 35 nm) switch at the scale of the whole volume [34].
Therefore, in the context of random number generators,
extreme scaling of the nanodevices appears as providential,
as smaller volumes and areas are directly linked to a lower
magnetization stability of the free magnet [41], increasing

random-bit-generation speed exponentially. This beneficial
impact of scaling effects is in sharp contrast to MRAMs,
where conservation of stability with extreme scaling
presents an important challenge [42].
From the study described in the previous section, we

observe that a 25% correlation between consecutive bits
can be efficiently whitened out by XOR8 and allow
generated random numbers to pass all of the NIST STS
tests. This consideration, together with the model, allows us
to evaluate quantitatively the speed of scaled random bit
generators based on superparamagnetic tunnel junctions by
evaluating the maximum sampling frequency to keep the
correlation ρcX;Xþ1 ≲ 25% (see Fig. S4 of the Supplemental
Material for details [36]):

Fmax
sampling ≈ 3FMTJ ¼

3

2
f0 exp

�
−
ΔE
kBT

�
; ð2Þ

where ΔE is the energy barrier separating the two states.
ΔE ¼ KeffðDÞπðD2=4Þt is derived as a function of the
device diameter D, where t ¼ 1.6 nm is the free-magnet
thickness and the effective anisotropy KeffðDÞ is derived
while considering interfacial anisotropy and bulk anisotro-
pies, using experimental values from Ref. [34]. Figure 4(a),
based on this derivation, shows that random bits could be
generated at up to tens of megahertz for energy barriers
below 5kBT, corresponding to a diameter of 8 nm.
In addition, in a final system, specialized transistor-based

electronics needs to be associated with the superparamag-
netic tunnel junctions to read their states without interfering
with the random-bit-generation quality. Here, we consider a
precharge sense amplifier circuit [(PCSA); see Fig. 4(b)], a
CMOS circuit originally proposed as a MRAM-read circuit
[43]. We simulate this circuit using standard integrated
circuit design software (CADENCE tools) and the transistor
models of a 28-nm commercial technology. The super-
paramagnetic tunnel junctions are modeled using a compact
(VERILOG-A–based) model implementing the Arrhenius-
Néel model. The results of circuit simulation [Fig. 4(c)]
show that the read energy is relatively independent from
superparamagnetic tunnel junction resistance, and very low

FIG. 4. Sampling rate and readout circuitry. (a) Effect of scaling the energy barrier on the ideal sampling frequency, based on the
device model. (Inset) The energy barrier as a function of the junction diameter for PMA MTJs. (b) Precharge-sense-amplifier (PCSA)
circuit for reading the state of a superparamagnetic tunnel junction (SPMTJ). (c) PCSA reading energy as a function of the
superparamagnetic tunnel junction P state resistance RP.
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(approximately 2 fJ=bit). We also evaluate the read disturb
effect of the PCSA. Reading the state of a junction can
potentially affect random bit generation through the spin-
torque effect. Based on the spin-torque model of Ref. [40],
its impact on themean state is around 10−6 for junctions such
as the one we characterized experimentally. It would stay
below 0.1% for ultrascaled junctions functioning at high
frequencies, as shown in Fig. S11 of the Supplemental
Material [36]. This small effect would therefore be corrected
by whitening.
Evaluating the energy consumption of random bit gen-

eration requires taking into account the whitening process.
As XOR whitening combines multiple junction states per
generated bit, it requires multiple read operations per
generated bit. XOR8 reads 8 junctions to generate a bit and
requires 20 fJ=bit on average (including the XOR gate
operation). In terms of area, in a 28-nm technology, the
layout of a full XOR8 random bit generator takes less than
2 μm2. XOR4 whitening would require 9.8 fJ=bit and a
1-μm2 area.
These results show the potential of superparamagnetic

tunnel junctions for state-of-the-art low-energy random
number generation.

V. SENSITIVITY OF THE RANDOM NUMBER
GENERATORS TO PERTURBATIONS

Although superparamagnetic tunnel junctions allow
random number generation with minimal energy, their
sensitivity to external perturbations must be carefully
evaluated.
First, as the stochastic switching of superparamagnetic

tunnel junctions is thermally activated, temperature directly
affects their switching rates. Figure 5(a), based on themodel
introduced in the previous section, shows the temperature
dependence of themaximum sampling frequency for several
values of the effective barrier. Higher temperatures produce
better random numbers: as temperature increases, the super-
paramagnetic tunnel junction switching rates increase
accordingly, thus allowing faster sampling frequencies.

Devices should therefore be sized based on their lowest
operation temperature.
Superparamagnetic tunnel junctions are also sensitive to

magnetic fields. Figure 5(b) shows the experimental mean
state of a superparamagnetic junction as a function of the
external magnetic field. Fields of a few oersteds shift the
mean state to a level that cannot be corrected by XOR8

whitening. Magnetic shielding is therefore necessary for
applications. Such technology (based on Mumetals) has
already been developed for MRAM.
Finally, a challenge regarding scalability and integration

is that closely packed superparamagnetic tunnel junctions
can interact by dipolar interaction, which could lead to
correlations in random numbers. In the case of perpen-
dicularly magnetized superparamagnetic tunnel junctions,
using the previously introduced model, we determine that
the critical center-to-center distance between two super-
paramagnetic tunnel junctions guaranteeing negligible
cross talk [44], corresponding to less than a ρc ¼ 0.1%
cross-correlation, is given by (see Fig. S5 of the
Supplemental Material for details [36])

dc ¼
�

μ0ðMSVÞ2
4πkBT tanh−1ðρcÞ

�
1=3

: ð3Þ

Figure 5(c) shows the evolution of this critical distance
at room temperature as the diameter of the junctions is
scaled down. It falls below 100 nm for ultimately scaled
10-nm-diameter devices, which constitutes a layout design
rule, and which would naturally be respected if the
junctions were associated with PCSA circuits.

VI. USING SUPERPARAMAGNETIC TUNNEL
JUNCTIONS FOR UNCONVENTIONAL

COMPUTING

To illustrate the potential of superparamagnetic tunnel
junctions for unconventional computing, we use the exper-
imental whitened random bitstreams as inputs for a modern
stochastic circuit [Fig. 6(a) and Ref. [3] ] that performs

FIG. 5. External perturbations and cross-talk effects. (a) Theoretical curve of the maximum sampling frequency for high-quality
random bit generation, as a function of temperature, for different junction stabilities (the black curve corresponds to the junction
characterized in Figs. 2 and 3). (b) Black symbols indicate the experimental mean state of the junction (up ratio) as a function of the
applied magnetic field (the red dotted line represents theoretical values). (c) Theoretical minimal distance between superparamagnetic
tunnel junctions allowed to prevent cross talk, as a function of the superparamagnetic tunnel junction diameter.
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Bayesian inference as a non-Turing machine. As a peda-
gogical task, we use this circuit to classify email messages
as either spam or not spam [sample messages are presented
in Fig. 6(a)], as was recently introduced in Ref. [3].
The approach uses a dictionary of known words with

their associated occurrence rates in spam and nonspam
messages. Each word of the dictionary has an associated
probabilistic binary generator whose probability of drawing
a 1 is set to different values depending on the presence (or
absence) of the word in the presented sentence. As our
random bit generators provide bitstreams with mean values
of 0.5, multiple random bit generators are needed to create a
probabilistic binary generator [see the random-number-
generator (RNG) block in Fig. 6(a), which is detailed in
Fig. S6 of the Supplemental Material [36] ]. The outputs of
these generators are then combined using C elements to
perform an approximate Bayesian inference [3]. The time
average of the output gives the probability that the
presented message is spam.
Figure 6(b) gives the spam probability inferred using

XOR4-whitened bitstreams and shows that the more random
bit generators that are used per word, the more precisely the
probabilistic binary generator can be tuned, and the better
the prediction is. Also, the longer the output averaging time,
themore accurate the answer for the system is. A trade-off for
maintaining low energy consumption is found for 8 random
bit generators/word and averaging over 2000 samples (see
Figs. S7 and S8 of the Supplemental Material [36]).
Because of its reliance on multiple stages of binary

bitstream combination, and fine generator probability
tuning, this circuit is sensitive to the quality of the under-
lying random number generator. We test the circuit using
raw 5-kHz-sampled experimental bitstreams, as well as its
XOR4- and XOR8-whitened versions. When the bits are not
whitened, the circuit does not perform satisfactorily [see
Fig. 6(c) and Fig. S7 of the Supplemental Material [36] ].
Using bits whitened with XOR8, the circuit performs as well

as the referenced Blum whitener, successfully classifying
all messages. Furthermore, XOR4, which does not pass all
NIST STS tests, also provides perfect classification while
requiring less energy.
These results highlight the potential of the approach for

low-energy applications. Using the results of the previous
section, circuit simulation with 8 random bit generators/
word and 2000 clock cycles shows that a message can be
classified using only nanojoule energy (the exact value
depends on the number of words in the dictionary; see
Fig. S9 of the Supplemental Material [36]). This simple
study shows that superparamagnetic tunnel junctions can
be used for efficient random number generation for low-
power probabilistic computing.

VII. CONCLUSION

In this work, we show that the natural dynamics of
superparamagnetic tunnel junctions produces random tele-
graph signals that can be read and turned into high-quality
random bitstreams with minimal energy and circuit over-
head while staying fully compatible with standard CMOS
fabrication processes.
The whitening process turning these measurements into

usable random bitstreams implies energy and area over-
head. However, while the referenced Blum whitening
would add important CMOS overhead, XOR adds very
little. XOR8 and Blum both provide high random bit quality
consistent with cryptographic requirements, but XOR8 fits
better with low-energy applications, as it typically requires
only 20 fJ=bit and 2 μm2, orders of magnitudes less than
the current state of the art. This efficiency comes at the cost
of speed. Scaled superparamagnetic tunnel junctions could
generate random bits at speeds of dozens of megahertz,
which is slower than higher-energy random bit generators,
but sufficient for many unconventional computing schemes
in very-low-power consumption contexts such as the

FIG. 6. Email classification with stochastic computing using whitened experimental random bitstreams. (a) Stochastic email
classification circuit, and email messages to classify. One “RNG” block includes several random bit generators in order to provide
bits with controllable probability. (Note that boldface in the sample message highlights the words present in the dictionary.) (b) Resulting
spam probability as a function of the number of random bits per word using XOR4-whitened experimental 5-kHz data over 2000 iterations.
(c) Spam classification success rates for different whitening techniques for 5-kHz sampling, using 8 bits/word and 2000 iterations.
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Internet of things. This efficiency also comes at the cost of a
certain sensitivity of random bit generation to the environ-
ment, making it prone to attacks. Random bit generation
based on superparamagnetic tunnel junctions is therefore
much better suited for unconventional computing than for
cryptographic applications.
The evaluation of the probabilistic email classifier circuit

also suggests that, in many alternative computing schemes,
lower-quality whitening can be used successfully to
achieve extreme energy efficiency without degrading per-
formance. At design time, a balance between random
number quality, generation speed, and energy consumption
can be freely chosen to suit the target application. This
flexibility is especially important in the context of modern
Bayesian inference systems [45,46], but also for embedded
circuits and Internet-of-things applications that are
designed to work at low frequencies and low energies.
This study shows, through the example of superpara-

magnetic tunnel junctions acting as natural noise ampli-
fiers, that emerging nanodevices could be used as highly
efficient sources of true randomness for a wide range of
applications.
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